

Universität Mozarteum Salzburg Mirabellplatz 1, 5020 Salzburg, Austria www.moz.ac.at

X-Reality-Lab &
mozXR Open-Source Framework
The X-Reality-Lab is the entirety of infrastructure – the room itself and the technology available in it. mozXR
is the open-source framework (OSF), allowing you to create content for the X-Reality-Lab.

Possibilities and possible Scenarios
With mozXR in the X-Reality-Lab a broad variety of interactive audio-visual projects can be realized. Two
tracking systems allow for the localization of people and objects within this large projection room. Four
powerful PCs provide high processing and rendering performance and a sophisticated sound system
provides high-quality sonification.

Interactive dance performances, co-located games and experiences and various kinds of generative audio-
visual pieces are some examples of what’s possible with mozXR in the X-Reality-Lab.

X-Reality-Lab Infrastructure
The X-Reality-Lab is an approximately 165 square
meters hexagonal projection room.

Rendering and Projection
Five of the walls and the floor are covered with
stereoscopic projection. Seven projectors are
showing images, rendered by four PCs.

Sound System
The sophisticated sound system consists of
an array of 60+ speakers and subwoofers.

Tracking
Two tracking systems cover the whole room and
are available in the Unreal Engine OSF project.

https://www.moz.ac.at/de/ueber-uns/x-reality-lab

Universität Mozarteum Salzburg Mirabellplatz 1, 5020 Salzburg, Austria www.moz.ac.at

pharus – 2D floor Tracking
pharus is a LiDAR based 2D tracking system which is integrated in the mozXR OSF.

• 6 LiDARs located on the floor in the corners and in front of the central wall projection
• It can track up to 20 people robustly and more. At a certain point occlusion between tracked

people limit the performance of pharus.

OptiTrack – optical marker tracking
• The whole room is tracked with 12x OptiTrack Primex 120W

cameras – mounted on ceiling.
• Occlusions near the wall are a natural limitation.

mozXR Open-Source Framework
With the mozXR Open-Source Framework comes a synchronized stereoscopic 3D cluster rendering setup
withs plugins and integrations which ease the use of the technologies available in the X-Reality-Lab. It is
developed for Unreal Engine, Unity Engine and TouchDesigner.

In all three cases the general setup is similar. One primary node is synchronized do secondary nodes. The
exact nature of the synchronization varies between the three OSFs.

Mid 2025 the mozXR OSF Unreal Engine integration will be available. The integration in Unity Engine and
TouchDesigner will follow.

The complete rollout of the Open-Source Framework including documentation and training materials is
planned for the end of March 2026.

Rendering and Projection
In the X-Reality-Lab, on five projection surfaces (seven projections witch edge blending on wall and floor)
images are rendered frame synchronous in sequential stereoscopic 3D. Room and infrastructure
configuration files are used so the created content is rendered as desired. The projection setup (the
geometry of projections screens in the room) and the cluster setup (settings for the render PCs, such as IP
address and which image to render) are defined within these configs. Different configs allow for different
projection setups in a given room. Configs can be edited and new configs for further rooms – such as the
Deep Space 8K in the Ars Electronic Center in Linz – can be added.

World/Object Synchronization
While the rendering is synchronized automatically. The synchronization of virtual objects, data, events and
so on must be managed to a certain extent. Synchronization mechanisms are present in all three engines
and examples are present in the template projects.

Simulation
A simulation environment allows the validation of both, the visual output and technical correctness. It helps
content creators to have a preview of their projects on their desktop and simulate the distributed cluster

https://ars.electronica.art/futurelab/en/pharus/
https://www.optitrack.com/cameras/primex-120/
https://www.optitrack.com/cameras/primex-120/
https://www.unrealengine.com/
https://www.unity.com/
https://derivative.ca/UserGuide/TouchDesigner

Universität Mozarteum Salzburg Mirabellplatz 1, 5020 Salzburg, Austria www.moz.ac.at

setup to a certain extent. This allows the detection of potential issues in an early stage of a project. Also
inputs and interactions can be simulated. A pharus simulator allows interaction tests and OptiTrack data can
be played back in Motive (proprietary Software).

Sound System
There are two distinct ways of how to get audio output in the X-Reality-Lab using mozXR.

1. Sending an audio signal to the sound system. This can be Stereo, 5.1, 7.1. This can differ between the
different engines.

2. Sending OSC commands to an external DAW which can leverage the full potential of the sound field
system installed in the X-Reality-Lab. The OSC data can include the position of and an id of a given
sound.

Tracking
Integrations are available for both tracking systems and included in the template projects. The tracking
technologies are utilized in the three artistic exploration projects (templates) to a different extent.

2D floor Tracking
The 2D floor tracking system pharus provides the position of people and objects within the X-Reality-Lab.
pharus data is made available in the network via multicast and therefore can be received by any connected
device.

OptiTrack – optical marker tracking
OptiTrack is a marker-based tracking system. It provides very precise low latency 3d tracking. An
integration is available in the three engines.

• Rigid Body Tracking
• Passive reflective or active Marker Tracking

mozXR Unreal Engine Open-Source Framework
Frame synchronous stereoscopic rendering and world synchronization is achieved using Unreal Engines
nDisplay.

Rendering and Projection
mozXR for Unreal Engine comes with nDisplay configs for the X-Reality-lab. Different configs exist for
different use cases. There will be one which allows simulated testing on the desktop (see Simulation).

World/Object State Synchronization
The synchronization of the virtual world and it’s entities is also handled with nDisplay. Different solutions are
present in the template project.

• Transformation synchronization using Cluster Scene Components: Easiest way which lets users
decide which objects need to be synchronized between nodes/projections.

https://docs.optitrack.com/motive/data-recording
https://www.optitrack.com/
https://dev.epicgames.com/documentation/en-us/unreal-engine/ndisplay-overview-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/ndisplay-actor-replication-in-unreal-engine?application_version=5.5

Universität Mozarteum Salzburg Mirabellplatz 1, 5020 Salzburg, Austria www.moz.ac.at

• Custom synchronization using Cluster Events: Provides more control and allows the synchronization
of arbitrary data between nodes/projections.

• Particle system synchronization: Deterministic Niagara systems can be synchronized between
nodes/projections.

Simulation
A visual preview of how the project will look like in the target room is equally important as technical
verifications.

• Visual preview: as the geometry of the room is known due to the nDisplay config it is possible to get
a preview of the rendered result within the Unreal Engine Editor.

• By using Switchboard locally, the whole cluster setup (4 render PCs in the X-Reality-Lab) can be
started virtually. The rendered output and data synchronization and rendering can be tested on the
desktop close to the real-life setup.

Sound System
mozXR Unreal OSF provides:

1. Audio output in Stereo, 5.1, 7.1.
2. Sending OSC commands to an external DAW.

Tracking

pharus – 2D floor Tracking
the pharus plugin receives data via multicast and is also included in the project.

OptiTrack – optical marker tracking
OptiTrack data is received via a Live Link Plugin.

How to work with mozXR Unreal Engine OSF
• Unreal Engine 5.5.x (TBD) installed.
• Clone the repository from GitHub (not available yet).
• Follow instructions in readmes and learn how to use certain parts of the system using the project

template. The complete documentation for this project follows later this year and will be officially
published beginning of 2026.

mozXR Unity Engine Open-Source Framework
The Unity Engine integration of mozXR leverages the features of nDisplay by communication with an Unreal
Engine instance. Thereby it achieves synchronization and stereoscopic 3D rendering. Inter process

https://dev.epicgames.com/documentation/en-us/unreal-engine/using-cluster-events-with-ndisplay-in-unreal-engine
https://github.com/ArsElectronicaFuturelab/UE-DeepSpace-PharusLasertracking
https://docs.optitrack.com/plugins/optitrack-unreal-engine-plugin

Universität Mozarteum Salzburg Mirabellplatz 1, 5020 Salzburg, Austria www.moz.ac.at

communication (IPC) between these engines enable the synchronized flow of input and output data
between the different render PCs in the cluster.

Rendering and Projection
Unity renders in stereo 3D, Unreal Engine displays the rendered frames in synced stereo.

World/Object State Synchronization
The Unity primary node processes all inputs and performs all simulations. A synchronization mechanism
allows content creators to decide which objects or variables need to be synchronized. Via IPC the data is
communicated to Unreal Engine and synchronized via nDisplay.

Simulation
Both, the visual results, as well as technical validation to a certain extent can be simulated.

Sound System
The mozXR Unity OSF provides:

1. Audio output in Stereo, 5.1, 7.1.
2. Sending OSC commands to an external DAW.

Tracking

pharus – 2D floor Tracking
the pharus integration receives data via multicast and is also included in the project.

OptiTrack – optical marker tracking
OptiTrack tracking data is available in mozXR Unity applications.

How to work with mozXR Unity Engine OSF
• Unity Engine 6000.xxx (TBD) installed.
• Download the mozXR Unreal Engine for Unity render and sync application
• Clone the mozXR Unity Engine OSF repository from GitHub (not available yet).
• Follow instructions in readmes and learn how to use certain parts of the system using the project

template. The complete documentation for this project follows later this year and will be officially
published beginning of 2026.

Universität Mozarteum Salzburg Mirabellplatz 1, 5020 Salzburg, Austria www.moz.ac.at

mozXR TouchDesigner
Open-Source Framework
The Unity Engine integration of mozXR leverages the features of nDisplay by communication with an Unreal
Engine instance. Thereby it achieves synchronization and stereoscopic 3D rendering. Inter process
communication (IPC) between these engines enable the synchronized flow of input and output data
between the different render PCs in the cluster.

Rendering and Projection
TouchDesigner .tox files are loaded in an Unreal Engine application using TouchEngine. This enables
synchronous stereoscopic 3D rendering.

World/Object State Synchronization
The mozXR TouchDesigner implementation uses OSC synchronization and SyncOut for data
synchronizations.

Simulation
Both, the visual results, as well as technical validation to a certain extent can be simulated.

Sound System
The mozXR TouchDesigner OSF provides:

3. Audio output in Stereo, 5.1, 7.1.
4. Sending OSC commands to an external DAW.

Tracking

pharus – 2D floor Tracking
the pharus integration receives data via multicast and is also included in the project.

OptiTrack – optical marker tracking
OptiTrack tracking data is available in mozXR Unity applications.

How to work with mozXR TouchDesigner OSF
• Install TouchDesigner v202x.xxx (TBD)
• Download the mozXR TouchDesigner OSF packages consisting of:

o Touch Designer base project and/or template project
o mozXR Unreal Engine – TouchEngine application

	Possibilities and possible Scenarios
	X-Reality-Lab Infrastructure
	Rendering and Projection
	Sound System
	Tracking
	pharus – 2D floor Tracking
	OptiTrack – optical marker tracking

	mozXR Open-Source Framework
	Rendering and Projection
	World/Object Synchronization
	Simulation
	Sound System
	Tracking
	2D floor Tracking
	OptiTrack – optical marker tracking

	mozXR Unreal Engine Open-Source Framework
	Rendering and Projection
	World/Object State Synchronization
	Simulation
	Sound System
	Tracking
	pharus – 2D floor Tracking
	OptiTrack – optical marker tracking

	How to work with mozXR Unreal Engine OSF
	mozXR Unity Engine Open-Source Framework
	Rendering and Projection
	World/Object State Synchronization
	Simulation
	Sound System
	Tracking
	pharus – 2D floor Tracking
	OptiTrack – optical marker tracking

	How to work with mozXR Unity Engine OSF
	mozXR TouchDesigner Open-Source Framework
	Rendering and Projection
	World/Object State Synchronization
	Simulation
	Sound System
	Tracking
	pharus – 2D floor Tracking
	OptiTrack – optical marker tracking

	How to work with mozXR TouchDesigner OSF

